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Abstract

For precise time intercomparisons between a master frequency standard and a slave time scale, we

have found it useful to quantitatively compare different fitting strategies by examining the standard

uncertainty in time or average frequency. It is particularly useful when designing procedures which

use intermittent intercomparisons, with some parameterized fit used to interpolate or extrapolate

from the calibrating intercomparisons. We use the term "metafttting "for the choices that are made

before a fitting procedure is operationally adopted. We present methods for calculating the standard

uncertainty for general, weighted least-squares fits and a method for optimizing these weights for a

general noise model suitable for many PTTI applications. We present the results of the metaJitting

of procedures for the use of a regular schedule of (hypothetical) high-accuracy frequency calibration

of a maser time scale. We have identified a cumulative series of improvements that give a significant

reduction of the expected standard uncertainty, compared to the simplest procedure of resetting

the maser synthesizer after each calibration. The metaJitting improvements presented include the

optimum choice of weights for the calibration runs, optimized over a period of a week or lO days.

Introduction

In preparing to fit precision time comparison data, usually questions concerning "optimal" fitting

strategies have been addressed in a generic rather than in a specific sense. It is interesting to

examine whether, for specific cases, significant advantages might accrue from customizing the fitting

strategy to the specific pattern of data points and the noise spectrum. In practice, many really

important choices are made before any fit. is finalized, and yet are not necessairly optimized ms part

of the fitting procedure. (a) A fitting metric and method nmst be chosen (such ms lemst-squares

fitting). (b) The set of parameterized ha.sis functions must be chosen: ha.sis function number and

type (such as a second order polynomial). (c) An outlier removal method may be adopted (such

ms iteratively discarding a limited number of points having anomalously high residuals). (d) The

relative weighting to be given to each data point must be determined (such ms the use of end-point

only linear fits vs unweighted linear least-squares fits). (e) A final "consistency of fit. with data

and noise model" parameter should be derived (such a.s the reduced X 2 for a least-squares fit with
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known noise). Many of these choices depend in subtle ways on the type of noise encountered, and

here precise time measurements often provide details of the noi_ spectrum which are not trivial to

incorporate into an optimal treatment of (a)-(e). Since the term "fitting" is generally interpreted

as referring to the determination of a set of parameters from a particular data set, we use the term

"metafitting" to encompass the optimization of the broader processes such as (a)-(e).

But in what sense is this "metafitting" to be judged? At first sight, there appear to be too many

choices. The fitting might be optimized in an average sense, minimizing some metafitting metric

function that sums over experimental residuals. If the autocorrelation function of the noise is

known (or modeled) it is possible to calculate and minimize the metric function summing over the

expected "residuals" at unmea.sured times. Thus the fitting might be optimized in a local sense,

minimizing a residual at a specific time (open to choice), or it might be optimized to minimize

a residual of the average frequency over a specific interval (each end being ()pen to choice). The

point, points or interval must be chosen, and a procedure must be found to estimate the expected

residual(s) at times other than those at which measurements have been taken.

Fortunately, international guidelines [1] now strongly suggest a good quantity to optimize: the

"standard uncertainty", which is the root-mean-square residual of the fit's extrapolation or inter-

polation to a specific point, one not necessairly included in the fit. It is also a good quantity

to optimize in that a standard method [2](the Wiener-Kolmogoroff theory) exists for any fitting

procedure that uses a linear combination of the data. All least-squares fitting procedures with

linear coefficients can be handled explicitly in this way [5]. For the purposes of time and frequency

metrology, metafitting to minimize the standard uncertainty is a good choice - but it might not

be as good a choice in other applications (where, for exmnple it might be more appropriate to try

minimizing the occurrence of outlier events having disasterous consequences). For frequency or

time interval metrology, the standard uncertainty in the average frequency over an interval makes

an even more attractive discriminant for metafitting.

The power law noise models appropriate for DTTI phase comparisons (:an have low frequency

divergences that appear to be worrying to some purists who wish to assure strict stationarity of

any process before developing its formalism. In the development of computable forms [3],[5], it is

straightforward to show that the standard uncertainty in the average frequency of a least-squares

fit. is not divergent for most commonly encountered power law noise spectra, with the exception of

random walk frequency noise. However, the real question is more stringent than simple stationarity:

have we enough long-term data on the system being modeled to obtain results which converge'?

We believe that this type of question can be rigorously handled by imposing a low-frequency cutoff

(and thus ensuring a formal stationarity), and then verifying not merely that any results extracted

from the model converge a._ the low frequency limit approaches zero - but also that the results have

converged to the desired degree before the low frequency limit is sampling Fourier components of

the noise which have not. been measured.

Choosing Weights in Weighted Least-Squares Fits

We present here a genera] strategy for evaluating and optimizing distributions of weights in a

weighted least-squares fit to phase data. We will concentrate on optimizing fitting that compares the
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fl'equency of a continuously operated oscillator with a frequency standard (perhaps intermittently

operated), fl)r the purposes of frequency calibration. The strategy is based upon the analytic

expressions for the standard uncertainty in frequency, generally extrapolated over a wider interval

than the calibration interval, where a dense set. of high-precision phase comparisons would normally

be available. A noise model is assumed which has wide applicability to a broad range of frequency

standards. The degree of frequency control will be evaluatable for any set. of weights in a weighted

least-squares fit. that is linear in the fitting coefficients (but fully general in the choice of basis

functions).

As our metafitting metric we choose the standard uncertainty in the average frequency, evaluated

over a general interval which could lie considerably displaced from the fitting interval. This is

the most appropriate metric for frequency metrology applications, since the standard uncertainty

is now the internationally recommended [1] way of specifying calibration uncertainty. With our

procedures the standard uncertainty in average frequency can be evaluated for a broad class of

noise models, for any set of fitting points, for any extrapolation or interpolation interval, for any

linear coml/ination of arbitrary basis functions, and for any least-squares weighting. In particular,

in any of the al/ove cases our procedure can evaluate the standard uncertainty the equal-weight

procedure (advocated for its robustness) to the end-point procedure (advocated for its "optimum"

estimate of frequency for some pure (:lasses of noise), a.s well ms any intermediate case with higher

weights near the end-points of the caliliration interval. The procedure permits the evaluation of the

trade-off of uncertainty for other procedures which are percieved as being more robust. As is shown

below, even with large data sets, in some cases it appears to I)e feasible to choose the optimum

set of weights which minimize the standard uncertainty in average frequency for the interval being

considered.

Noise Model

The noise model xm(t) is the modeled phase difference between the master frequency standard

and the standard being calibrated. The noise model is taken as being the sum of a deterministic

part (which could include a phase onset, frequency offset and frequency drift) and a random noise

part, xo(t). The random noise includes the "full" noise model that is usually used in discussions of

frequency standard stability [9]: a sum of five noise processes, each normally distributed about the

mean (but with variances which depend on the time sampled in different ways) that have spectral

densities of phase noise (S_(f)) that are power laws which range from fiat to increasingly divergent

at low frequencies. Expressing the five terms in terms of the spectral density of the mean-square

of the fluctuations in _ (or yo(t)) at a frequency f, Sy(f), each noise term is described by an

amplitude ha which is taken to lie independent of any time translations (stationarity and random

phase approximations). The sum includes c_ = 2, white phase noise in x; e_ = 1, flicker (l/f) noise

in x; ct = 0, white frequency noise and random walk phase noise; a = -1, flicker frequency noise;

and (_ = -2, random walk frequency noise. A low-frequency cutoff fl and an upper frequency cutoff

fh. The spectral density of the mean-square fluctuations in xo(t) is Sx(f), and for this noise model
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2 k /,of<o-2) (I)s_.(f)=_ /,..:"and &(f)= (2_)_

thor a given noise model of this type, the standard uncertainty of tile fit at any Riven time can be

calculated front the autocorrelation function (xo(t)xo(t + r)). It is divergent for four of our five

types of noise unless a low-frequency cutoff is applied, and even then can challenge the accuracy

and dynamic range capacities of classical c_)mputing. Analytic' expressions for this aut.ocorrelation

function exist for each type of noise [5], and modern arbitrary-l)recision computer languages are

able to cope directly with the autocorrelation flmction.

In our analysis of tile uncertainty associated with any useful lea.st-squares [it,, we expect no di-

vergences to infinity in the standard uncertainty, and so the combinations of the autocorrelation

functions lnust have their diw_rgent parts cancel, with the fitting itself acting a.s low-frequency cut-

o[['. In considering the standard uncertainty of average fl'equency fl'om a lea_t-squares fit., we have

found it. helpful to use analytic expressions [5], [4], [3] for the less divergent general two-interval

covariance of the random noise model, that is the covariance of the time-scale departure over the

time interval [tl, 12] with lhe time-scale departure over the time interval [13, 14]:

S = ([.o(t.,) - :,-,,(t,)][=o(t.,,)- _o(t_)]>

F/,= (yo(t') _o(t")>,:tt"dr,'
• I :¢

= (,.,

(:2)

where (9l,..__.]gl,:,J.]) is lhe general covariance of the average frequency: a generalizati,m of the

two-sample variance of the average frequency. The generalization includes the possibility of an

overlap ot' the intervals (a_ well as the l)ossibilit.y of a "dead time" between the intervals), and

incorl)orates the possibility of considering the frequency average over two time intervals of different

duration. Just as for the two-sample variance of y, and for the autocorrelation fundion of x(/), the

<-ovarian<'e separates into the fiw' terms of the noise model.

Analytic forms for the live terms of the aulocorrelation fun<-tion of x(t) and for the five terms

of the general <.ross-correlation of 0 are given in references [5], [.1] and [3], derived with only the

usual assumptions about high and low fi'equency limits to the noise bandwidth. The references also

contain some comments on practi<'al melhods for computing values using these forms.

Weighted Least-Squares Fits

Weighted le_L_l-squares fitting chooses the n linear coefficients dz of tile _ basis functions gt(t),

to arrive at. a function xp(/) which will l_e used fur interpolation or extrapo]ation. In fl'equency

standards work, we would usually lit a phase offset, a frequency off:set, and solnetinles a drift rate

and highcu' l erms such as daily or seasonal fluctuations.
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xp(t) = d. if(t) = dl + d2t + d# 2 + _ dtgt(t).
l=4

(a)

The coe[ficient vector 0_is chosen to minimize the sum over the N fitting points with phase difference

values of x(ti) at times ti

= m[. (lO - d. (4)
i=l

where the weight, levi. is applied to the square of the i_t' residual. Least-squares fitting is done by

setting the n derivatives of L 2 equal to zero, which Rives a set. of n. linear equations which can

be solved for the n fitting coefficients of & Gd = _, where G is an ,_ x n matrix with elements

(*'qr : _i_'1 ['Vigq(ti.)Or(li) , and ._'is an lz-dilllensional vector with elelncnts -gr = E_I [Vi.xo(li)Or(li)"

For the purposes of modelling the standard uncertainty, we use x0(ti) to model m(ti), since it can 1,e

shown [5] that any general offset in phase, offset in frequency or a linear fl'equency drift is exactly

absorbed by the fit..

Metafitting with Time Uncertainty Metric

One candidate metric fin" judging weighted least-squares [its is the standard uncertainty in time,

determined at a specific time t, relative to the set. of [itl.ing points {/7}. We can explicitly calculate

the effects of the weighted least-squares fit reacting to the noise model for this time t: we are not

restricted to studying the variance at. the fitting t)oints. The expecled variance in x(t) from the fit

d' .q'(t)can be calculated in terms ,,f the auu,correlation functi,m tc.ft < xo(t_)a:o(t_),

N N

([-,/,/- :
i 0.j=0

where Do(l) 1 and Di(t) = IV x-'t, n= ' iz_.q=lEr=l(G-l)qrgr(ti).qq(t) " For the standard noise model,

the aut.ocorrelation flmction (xo(t)xo(t)} can be evaluated analytically [5], although the result-

ing expressions can challenge the dynamic range of conventional computing. The square root of

this variance in x(t) would be the formal Inetric. The minimization t)roblem, for ol)timizing this

inetric with respect to the weights I_V,, looks intractable, but for cases o[ lnost interest it. can lye

substantially simplified in the same way as is described below for the frequency uncertainty metric.

Variants of this L2 metafitting metric are also possible, sulnnfing variances over inultiple test times.

Other metafitting metrics of the Lp-norm (Holder norm) class, could also be constructed. The

nfin-max (lira p --' oo) norm would minimize the maximum expected time deviation aInongst the

test times. Metafitting with the p = 1 metric would (for this class of metrics) give the most leeway

in allowing a small number of test points to have large variances. All these metafitting variants are
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substantially more intricate to use, and do not readily yield the major computational simplifications

which can 1)e found for the single-point L2 metric.

The method outlined above does not I)ring any great new insights into optimal ways of ('ombining

equivalent (:locks, nor for the optimal use of continuously operated primary standards, however when

a secondary time scale is to track a primary time scale where only intermittent intercomparisons

are available, an optimal choice could be made in terms of the noise processes known t() be present.

Metafitting with Frequency Uncertainty Metric

For precise time interval work, where the average frequency is the chief quantity of interest, we

wish to minimize the standard uncertainty in average frequency over an interval [t, t + r], caused

by the noise model as filtered by the weighted least-squares fitting procedure 1o the points {ti}.

Although the noise mode] is independent of time translations, clearly the standard uncertainty in

average fl'equency, uy, would be expected to depend on the offset, of t froin {ti}, as well as the

interval breadth r. It is defined by

(6)

We note that {x0(t+r)-x0(t)} = Z N+1 [x0(t_)--X0(tT-1)], if we define t i 0 = t and /j=N+I : t,-'l-T.

Although it might be convenient to envisage the set of {tj} as an ordered set with t_ > t.i_l ,

it, is not necessary to do so. Ordering the fitting points does not detract from the generality in

any way, but we do not wish to restrict the values of t or t + r. We would like to re-express the

d. {,q(t + r) - 9(t)} as a sum over only differences of the form xo(ti) - xo(t._). We note that we can
i

expand zo(ti) = xo(t.1) + _i=2{xo(ts) - x0(t.i-1)}, so that d. {if(t. + 7.) - if(t)} is equal to

N

E •{if(t+ - if(t)}=
i--l

N i n n

Z Wi Zix0(t.i)- x°(t.i-l)} Z Z(G-l)qrgr(t'i)(gq( t + 7-)- 9q(t)t
i-1 j=2 q=l r=l

N n n

+ 7.)-
i--I q-1 r=l

(7)

and the last term, multiplying xo(tl), can be shown to be equal to zero. To show this, it is sufficient

to show that _N 1 Wiff(ti)G-l_(t) is independent of t, or that _N 1 Wi_(ti)G -1 is equal to the

vector [1,0,0,...0]. We observe that, from our definition of G and since 9_ = 1, (311,0,0, ...0] =

_,N 1 Wi_(ti), and premultiplying by (;I -1 completes this proof, provided only that gl is a constant.

Thus u2(t, 7.)7.2 is equal to
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N+I

< [_ {_o(t.;)- _o(t..___)}
j 1

N i n n

- __ W_ ___,{xo(t._l - xo(t._-l)} __, _,(G-')q,.g,.(t,l{gq(t + rl - gq(t)}]2 > =
i=1 j=2 q=lr=l

N n

< [{xo(tN+,)- _o(to)}- E w,:{_o(.)- xo(t_.__)}_ r.(G-')_o.(t_llg_(t + _)- o_(t)}l_
i=l q=l r=l

(s)

>

Collecting the expressions with the same difference term {x0(ti ) -x0(tj-1)} allows us to write a

useful forln, namely

N+I

_,._(t,,-,-)T_:< [_ b_(t,_-)l_o(t._)-_o(tj-,)}l _>, (91
.i=l

n n -1 twherefor 2 <_j < N, [-)j(t,T) = 1--_Nj W__,q= 1 )-'].r=l(G )qrgr(.i){ga(t+'r)-gq(t)}; Dj=l(t,v) =

1 and Dj N+I (t, r) = 1. Multiplying the terms explicitly gives a computable form for the standard

uncertainty in average frequency:

N+I N+I

_,_(t.,_-1-,-_= Z _ b.i(t,-,-)b_(t,-,-)< [_o(t.,)- _o(t..___)l[_o(tk)- _o(t_-_)]>.
.i=1 ,_=l

(lO)

The utility of this form lies in the fact. that it is a sum over functions of the general form of Eq. 2,

which are easier to compute for our full noise model.

Metafitting Weights for Large Data Sets

For a given noise model (defined by the 5 parameters {h_} used to define Sv(f), and a given

distribution of fitting points {t_ }, and for a given interval [t, t + r]; the standard uncertainty in

average frequency over the interval can be calculated: Uy(t,7). Thus a choice of weights can be

determined which minimizes Uy(t, T), the standard uncertainty due to the effects of the random
noise. For each fitting point added, another weight must be determined. For small sets of fitting

points, the minimization problem is tractable, but for larger sets the minimization appears much

less straightforward. The weights could be parameterized to reduce the dimensionality of the

problem, at the expense of generality.

The full generality can be retained by largely linearizing the problem. For N fitting points, there

are also N weights to choose. Without loss of generality, the set of weights {Wi} can be normalized:

_]N1 Wi. = 1. If the partial derivative of G -1 with respect to Wk can be constrained to be zero, then

most of the N-dimensional search problem can be linearized, leaving a nonlinear search over at worst
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[(,,(,, + 1)/2) - 1] dimensions. G -1 will be independent of Wk if each element of G is constrained

to be a constant, (;qr = _1 Wigv(t'i)gr(t,) • Since (;qr = (;,.q, and since normally gl = 1, there

remain [(,,(_l + 1)/2) - 1] values. These constraint equations are used in the linear solution, and

tile optinmm values of (;qr can subsequently I)e found by nonlinear searching techniques.

For polynomial fitting, with n basis functions {9k(t) = t k-_ }, the partial derivative of G -_ with

respect to [N - 2n + 2] Wi's there would be only [2n- 2] dimensions for the non-linear search, and

if the problem can be set up symmetrically about the time origin, so that the first moment of the

weights and all odd moments are zero, there would be only In - 1] non-linear search parameters.

The even moments of the weights (summed over the fitting times {t,:}) would then be the [n - 1]

non-linear search parameters. If the problem is intrinsically asymmetric, then there would be

[2n - 2] moments to use as nonlinear search parmneters. For extrapolation, it seems clear that

there will be little likelihood of driving any Wi negative, but it remains a concern for the general

case and must be guarded against.

(?onsider tbr example the case of choosing a weighted least-squares fit of a general quMratic to N

phase comparison data point.s at a specific set of times {ti}. For a specific noise model described

by the coefficients {h,_}, we want to choose the weights to minimize the standard uncertainty in

the average frequency over the time interval [t, t, + r]. By constraining weights to sum to 1, and

by constraining the first, through fourth moments of the weights to be independent, of the first

[N -4] weights, we can ensure that, G -_ is independent of [N -4] weights. By equating to zero the

[N - 4] partial derivatives of u_(t,, r) with respect to Wi we can minimize the standard uncertainty

in average frequency with respect to these [N - 4] weights. The easiest form to differentiate for

this purpose is one like that of Equation 8, which has collected all the terms multiplied by any

weight Wi. Including the constraint equations, we then have N linear equations in the N unknown

weights {W i}, paranmterized in the 4 moments remaining to be searched. The optimized standard

uncertainty for this set of four moments is evaluated, and a four-parameter search (each set of

moments being optimized by re-solving the N linear equations) this search is tractable by the

simplex method (for example). If the problem is symlnetric about some time (symmetry for both

{t_} and [t, t + r]), it can be set up so that the first and third moments are zero, and there would

be only two parameters to search.

Choosing weights is simpler for a linear least-squares fit to N phase comparison data points,

taken at a specific set of times {ti}. To metafit the best weights that minimize the standard

uncertainty in the average frequency over the interval [t, t + r] for the noise model of interest,

described by the coefficients {h,_}, we can again linearize the problem - but with only two search

parameters (the first and second moments of the weights). We define three constraint equations

y_.N 1 I/V,: = 1, _N 1 W#i = A_/1 and y_N W#2i = M2. The N partial derivatives, with respect to

the weights, of the standard uncertainty in average frequency over the interval [t, t + r] give a set

of N equations F. ffz = < where I_.4 = (ti - M1)r/(M2 - M?) < - z0(tl)][z0(tj) - z0(tl)] >

and rj =< [x0(t + r) - xo(t)][xo(t_) - xo(t,)] >. The first column of F is a column of zeros. Three

of these equations are to be replaced by the three constraint equations: one replacement is for the

most ill-conditioned equation j which has t.i closest to the centroid of the weights (M1) for this

iteration, the other two replacements are more arbitrary. If the problem is symmetric about some

time (symmetry for both {ti} and [t, t + r]), it can be set up so that. the first moment is zero, and

there would be only one parameter to search.

354



Anevensimplercaseofmetafittingis thechoiceof weightsinasimpleweightedaverage,for multiple
calibration runs to minimize the standard uncertainty in tile average frequency for a specific: period,

arbitrarily placed with respect to the calibration runs. We consider calibration intervals long enough

to be in the regime where the two end point method is chosen for each calibration run, with M

such calibration intervals [ti,, t, + "r/]. For the weighted average of the M calibrations, the standard

uncertainty in the average frequency over an interval [t, t + r], u_(t, r) is

" {_(t_+ _,) - _(t_)}
r Ti

i 1

Assigning a weight, of-1 to the interval [t, t. + r], defining r0 as being equal to T, Equation 11 can

be rewritten as

M

i=0 Ti

A solution for the optimum weighting procedure is relatively easy to find since the minimum value

for u2(t, t + T) is to I,e found for values of ,,i satisfying _° b_(t ' t + r)] = 0, so that after taking

the derivative and separating out the i = 0 term

M

Z _([x(t_ + ,9 - *(tdl[x(tk + ,-k)- ,(t,_)])
i= I

1
- ([,(t + '9 - _(t)l[_(tk +-,-k)- _(tk)]).

Tk
03)

We use M - 1 of these equations, and for the M °' equation we use the normalization equation

of the weights: _M 1 Wi = 1. This gives M simultaneous linear equations in the M unknown

weights. The general interval covariance has analytic: forms for our noise model, in terins of the

:Z-function [4]. If we define the M x M matrix F: F1,.i = 1 for j = 1..M, Fi.,j=_[Z(ti. + ri- t._)

+ Z(I,.j + "(_ - ti) - Z(ti + ri - tj - rj) - Z(ti - tj)] for i = 2..M and j = 1..M, and define _: rt = 1

and rj = fracl'rrj[Z(t + r - t.i ) + Z(tj +'(j - t) - Z(t + r - tj - Ti) - Z(t - t.j)] for j = 2..M. The

M dimensional weights vector ,ta is F -1 • <

Applications

For any given potential apl)lication of metafitting weights, we must consider whether metafitting

is more than an interesting acMemic exercise: can metafitting find a reduction in the standard

uncertainty which is a significant improvement? Since uncertainties are rarely established to better
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than 10%, an improvement should be larger than this to be deemed significant. Therefore we have

examined the simplest case, of linear extrapolation, discussed above, and for the five different power-

law noise types we have considered distributions of weights with different moments [6]. We have

examined the expected standard uncertainty for both symmetric extrapolation suited to time-scale

calibration (where post-processing can be used to apply calibrations from the "future") and to time-

assymetric extrapolation suited to real-time applications. For symmetric extrapolation intervals

that are large compared to the calibration run's duration, different common weight distributions

gave similar uncertainties (differing by less than 10%) except for white phase noise. For one-way

extrapolation for times much longer than the calibration run's duration, the uncertainties are even

more similar (less than 2% advantage for end-point fitting over equal weights, except for white

phase and flicker phase noise). Thus for many PTTI applications, end-point fitting and equal-

weight fitting give similar standard uncertainties, and the choice should be between the greater

simplicity of the end-point fit and tile greater robustness of the equal-weights fitting procedure.

In real-life PTTI work, robustness would often prevail over simplicity. For trying to optimize

results from multiple calibration runs, simplicity is valuable to us while robustness is not needed

in the model. The optimum processing of a number of calibration runs is expected to be largely

independent of the processing within the run.

The main application which has attracted our attention is the optimal use of hydrogen masers,

calibrated periodically in frequency with intermittently operated cesium fountain frequency stan-

dards [8], [6]. We consider two types of maser operation: free-running and autotuned. We use two

power law models for the maser noise, representing a free-running hydrogen maser (type 1) with

h2 -- 2.7 x 10 -24, hi = 2.9 x 10 -3°, h0 = 2.9 x 10 -27, h-1 = 2.6 x 10 -31 and h-2 -- 7.2 x 10-36; and an

auto-tuned maser (type 2) with h2 = 6.7x 10 -23, hi = 2.9x 10 -3°, h6 = 2.9x 10 -27, h-1 = 7.2x 10 -31

and h-2 = 4.9 x 10 -37. NRC has two low-flux masers which would benefit from a metafitting

optimization of the weights within a calibration run of an hour, since there is still some white phase

noise contribution for this calibration interval. Preliminary analysis suggests that the end-point

procedure is within 10% of the optimum. For phase data taken every 30 s for an hour, extrapolated

to an interval of a day, the end point method is 1.2% better than the equal-weight linear lea.st

squares fit for our free-running maser model, and a.s good for the type 2 maser model. Thus we

('an use the simple two end points procedure to establish the best frequency transfer accuracy for

multiple calibration runs. For this procedure the standard uncertainty for multiple calibration runs

can be calculated more easily than in the general case.

Within the context of end-point fitting from each calibration run there are still metafitting choices

to be made about the way in which the runs are to be used. One possible strategy is a loose lock in

frequency: after a calibration run (an hour in duration, in our example) is complete, the frequency

of the maser is reset (through the synthesizer control, for example), either immediately - or after

some delay. Clearly the least delay is best, and we chose this procedure with zero delay as the

reference procedure as we examine a series of possible improvements.

A slightly better possibility might be to have an output tightly locked in phase to the cesium

lbuntain during the calibration run, followed by a frequency lock to the fitted frequency of the

calibration run. The phase-lock type of frequency control removes the noise of the maser during

the calibration run, giving it an advantage that remains noticeable for extrapolation intervals many

times longer than the calibration interval. However, for extrapolations of an hour-long calibration
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out to a period of a day or more, there is not a large advantage: 2.3% for the free-running maser

and 2.4% for the autotuned maser model.

A more significant advantage comes from allowing postprocessing, as can often be tolerated in time-

scale construction and for frequency intercomparisons. We consider a single calibration interval

tc and calculate the ratio of the standard uncertainty of the average frequency over an interval r

for the best real-time frequency control to the symmetrically extrapolated time interval r. Tile

quantitative postprocessing advantage will depend upon the specific processing scheme or schemes

envisaged - the duration and frequency of calibration intervals. The postprocessing advantage is

up to a factor of two [6].

A postprocessing advantage of two is really quite significant. To achieve the same improvement

in the maser ensemble could be done - by increasing the maser ensemble size by four times. The

postprocessing "advantage of greatest interest to us is for r representing extrapolation to the time

interval between calibrations - which we expect would be between 1 day and 1 week. Initial interlab-

oratory frequency intercomparisons between cesium fountains, before regular calibration schedules

can be set up, may require extrapolation times longer than 1 week for minimum uncertainty.

Envisaging multiple frequency calibration runs per week, of either hydrogen maser type with a

cesium fountain having a standard uncertainty of 10-14T -1/2 optimistically 5 per week, at the same

time each working day, what is the best weighting procedure for using these calibrations in an

algorithm to determine the frequency over a given interval? For the week's pattern, postprocessing

extrapolation of each day's results independently, using the frequency from the nearest calibration

interval gives a 77% improvement in accuracy for the free-running maser, and an iml)rovement of

29% for the auto-tuned maser.

We have solved for the optimum weights of the ma.ser calibrations to give the lowest standard

uncertainty in average frequency over one week [6]. The week is best spanned by weighting Monday

and Friday runs more heavily, to account for the weekend gap in calibrations. For the type 1 maser,

the optimum weights follow the spanning times rather closely, and the optimum weights offer only

a 1.1% improvement in average frequency. For a type 2 maser, there is a 4.7% improvement.

If adjacent weeks' calibration runs are also available, and the average frequency over a particular

week is required, the optimum metafitting includes a small admixture from the preceding and the

following weeks. For a type 1 maser, most of the weight comes from the preceeding Friday and the

following Monday. For an autotuned (type 2) hydrogen maser noise model, the optimum weights

have a slower variation through the weeks, and the three-week optimum has several % of the weight

on points that are a full week from the calibration runs of the central week. There is a 19%

improvement to the type 1 maser, and an 18% improvement for the type 2 maser. The improvements

are summarized in Table I, given with standard uncertainties and cunmlative advantages as each

improvement is applied. For either maser model, the optimization of weights to apply to each run

over multiple weeks gives about a 20% improvement in accuracy from the equal-weight case. It is

not a large improvement, but it is ahnost free - although it does give additional cross-correlation

between each week's frequency processed in this way. Cascaded with the other advantages discussed

earlier, it results in a factor of 2.2 improvement in the accuracy transferrable with a free-running

(type 1) hydrogen maser; and an improvement of 64% for the auto-tuned (type 2) maser. For the

fi'ee-running maser model, the metafitted optimum standard uncertainty is 6.8 times smaller than
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II

method

f reset to unweighted fit

f reset to end points

III phase lock + II

IV daily postprocessed
V metafit 1 week

VI metafit 3 weeks

VII metafit 5 weeks

ay(7d)

Type 1 Cum.

uy(Td) Adv. adv.

1.79 x 10 -18 1.00

1.77x 10 -15 1.2% 1.01

1.73x 10-in 2.3% 1.04

0.97 x 10-15 77% 1.83

0.97 x 10-15 1.1% 1.85

0.81 x 10-15 19% 2.21

0.81 x 10-1'_ 0% 2.21

5.48 x 10-15

Type 2 Cum.

uy(7d) Adv. adv.

1.15 x 10 -lr' 1.00

1.15 x 10 -1'5 0% 1.00

1.12 x 10 -15 2.4% 1.02

0.87 x 10 -t5 29% 1.32

0.83 x 10 -1'5 4.7% 1.39

0.70 x 10 -1'5 18% 1.64

0.70 x 10 -15 .1% 1.64

1.72 x 10 -15

Table 1: Reduction of standard uncertainty in average frequency at 7 days, for a free-running (type

1) maser, and an autotuned maser (type 2), when controlled by different methods from five 1-hour

calibrations per week. The % advantage for each method is the accuracy improvement over the

previous method. The last column gives each method's cumulative advantage over method I, a

synthesizer reset to the lea.st-squares calibration fit. The Allan deviation _ry(r = 7d) is also given.

the Allan deviation at 1 week, and for the type 2 maser it is 2.5 times smaller than the Allan
deviation at 1 week.

Other interesting strategies are beyond the scope of this work. Longer runs on Monday and Friday

and/or early-Monday and late-Friday calibration runs could be invoked to further improve the

performance. Our methods allow for weight optimization for any set of calibration runs, and for

calculating the resulting standard uncertainty in average frequency.

For some applications, statistical independence of each week, or each 10-day period, may be highly

valued - for example, the clock reports to BIPM each 10 days that are used for determining TAI

(and UT(;) should 1)e independent of each other. Weights for data from the weekly calibration

cycle could be re-optimized for the seven different 10-day cycles that would exist. The metafitted

optimum weights for the two maser models are shown in Figure 1. For the free-running maser

model, the 70-day standard uncertainty in average frequency is 3.31 x 10 -1_ for the combination of

the seven independent optimized 10-day periods, as compared to 3.07 x 10-la for the combination

of 10 indet)endent 7-day periods. For the autotuning maser model, the 70 day standard uncertainty

in average frequency is 2.72 x 10 -1_ for the combination of the seven independent optinfized 10-day

periods, as compared to 2.62 x 10-1_ for the combination of 10 independent 7-day periods.

Conclusion

Our method for calculating the standard uncertainty for realistic noise models has allowed us to

compare a wide variety of algorithms for treating one particular calibration schedule. We have

metafitted the algorithm in several ways, and have identified ways to improve the accuracy of the

ma._er frequency control by 2.2 and 1.64 times. We find that using the 10-day BIPM schedule, with

indel)endent processing of the calibrations for the 10-day periods, the expected a.syml)tote for a
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single auto-tuned (type 2) maser could reach 1.2x 10 -1_ at 1 year. For a free-running (type 1) maser,

the standard uncertainty at 1 year would be 1.5 x 10 -1° . Thus a flicker floor and accuracy of 10 -1°

for the cesium fountain is accessible for periods of a year with current maisers carrying the time

scale. Operating the masers at the stalfility level of the ma.sers presents a challenge. Transferring

10 -la Dequency accuracy to a second laboratory also presents a challenge. The reliability of a

cesium fountain which might do this seems to be a major challenge, perhaps comparable to the

challenge of making a cesium fountain with a flicker floor and accuracy of 10 -to. Perhaps the

greatest value of this metafitting procedure is to show the very best performance which might be

extracted fl'om masers represented by these models. If greater accuracy is desired, then different

approaches must be used.

References

[1] Guide to the Expression of Uncertainty in Measurement, International Organization
for Standardization, Geneva, 1993. First edition. (Published in the name of BIPM, IFCC, ISO,

IUPA(. _, IUPAP and OIML.)

[2] A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill,

New York, 1965. First edition pp. 400-402. (Omitted from subsequent editions.)

[a] P_.a. Douglas and J.-S. Boulanger, Local Oscillator Requirements for Timekeeping in

the 10-14r -1/2 era, Proceedings of the 1992 IEEE Frequency Control ,qymposium, pp.

6-26 (1992).

[4] D. Morris, R.J. Douglas and J.-S. Boulanger, The Role of the Hydrogen Maser Fre-

quency transfer from Cesium Fountains, Japanese Journal of Applied Physies,33, pp.

1659-1668 (1994).

[5] R. J. Douglas., J.-S. Boulanger and C. Jacques, Accuracy Metrics for Judging Time

Scale Algorithms, Proc. 25th Annual PTT1 Applications and Planning Meeting, pp.

24,9-266 (1993).

[6] J.-S. Boulanger and R.J. Douglas, Frequency Control of Hydrogen Masers Using High

Accuracy Calibrations, Plvceedings of the 199_ IEEE Frequency Control Symposium,

pp. 695-708 (1994).

[7] D.W. Allan, Time and Frequency (Time-Domain) Characterization, Estimation, and
Prediction of Precision Clocks and Oscillators, IEEE Trans. Ultrason., Ferroelec.,

Freq. Contr. UFFC-34, pp. 647-654, (1987).

[8] J.-S. Boulanger, D. Morris, R. J. Douglas. and M.-C. Gagn6, Hydrogen Masers and Cesium

Fountains at NRC, in Proc.. 25th Annual PTTI Applications and Planning Meeting,

pp. 345-356 (1993).

[9] J.A. Barnes, A.R. Chi, L.S. Cutler, D.J. Healey, D.B. Leeson, T.E. McGunigal, J.A. Mullen Jr.,

W.L. Smith, R.L. Sydnor, R.C. Vessot and G.M.R. Winkler: Characterization of Fre-

quency Stability, IEEE Trans. lnstrum. Meas. IM-20, pp. 105-120 (1971).

359



Autotuned Maser

Free-running Maser .....................

Optimum Weights for Weekday Calibration

of 10-day Average Frequency

mm

01

\

\/

I I I

0 2 4

I I T _ I

6 8 10 12 14

Time (days)

Figure 1. Optimum weights for combining weekday calibrations that give the minimum standard

uncertainty in the average frequency over a lO-day interval. The calibrating reference standard is taken to be an

ideal one, used for one hour, at the same time every working day. The optimum weights are shown for two flywheel

oscillators: a free-running hydrogen maser model and an auto-tuned maser model. The optimum weights are shown

for a the lO-day period starting on each day of the week.
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